Question		on	Expected Answers		Additional Guidance	
1						
	а		same frequency / period	B1	accept wavelength / sinusoidal /AW	
			different amplitude / phase	B1	accept + sine and – sine for 2 marks	
	b		because the waves have a <u>constant</u> phase relationship or	M1	accept same phase relationship for 1 mark only	
			are <u>continuous</u> and have the <u>same</u> f/period/ λ			
			they are coherent	A1		
	С		use of 3 ms as period	C1		
			$f = 1/3.0 \times 10^{-3} = 330 (Hz)$	A1		
			using v = f λ 340 = 330 λ	C1	ecf for f possible e.g. λ = 1020 (m)	
			$\lambda = 1.0(2)$ (m)	A1	accept 1.03 (m) no SF error here	
	d	i	0	B1		
		ii	1.0 (µm)	B1	look for SF error i.e. zero for 1 (µm)	
	е	i	Intensity α (amplitude) ²	C1	allow I α A ²	
			so ratio is $(3/2)^2 = 9/4$ (giving 2.25 I)	A1		
		ii	resultant A = $A_s + A_T = (\pm) 1$	C1	ecf from (d)(ii)	
			so ratio is $(1/2)^2$ giving 0.25 I	A1		
	f	i	phase shift of π or 180° required or movement of $\lambda/2$	B1	ecf from (c); accept $(2n + 1)/2 \lambda$	
			1.02/2 = 0.51 (m)	B1	accept 0.50 m	
		ii	intensity increases	B1	accept quantitative answers, i.e. from 0.25 I to	
			to the maximum value	B1	6.25 I	
			Total question 4	18		

Question		ion	Expected Answers		Additional Guidance
2					
	а	i	λ distance between (neighbouring) identical points/points with same phase (on the wave)	B1	accept peak/crest to peak/crest, etc.
			f number of waves passing a point /cycles/vibrations (at a point) per unit	B1	accept number of waves produced by the
			time/second	B1	wave source per unit time/second
			v distance travelled by the wave (energy) per unit time/second		not $v = f \lambda$ and not 'in one second'
		ii	in 1 second f waves are produced each of one wavelength λ distance travelled by first wave in one second is f $\lambda = v$	M1 A1	accept time for one λ to pass is 1/f so v = $\lambda/(1/f) = f \lambda$ give max 1 mark for plausible derivations purely in terms of algebra (no words)
	b	i	infra red is part of the e-m spectrum	B1	
			lower f or longer λ than the visible region/light or suitable value or range of λ	B1	accept any single λ in range 10 ⁻⁵ m to 7.5 x 10 ⁻⁷ m or any reasonable wider range
		ii1	$\lambda = c/f = 3.0 \times 10^8 / 6.7 \times 10^{13}$	C1	
			4.5 x 10 ⁻⁶ (m)	A1	accept 4.48×10^{-6} or more s.f.
		2	$T = 1/f = 1/6.7 \times 10^{13}$	C1	-
			$T = 1.5 \times 10^{-14} (s)$	A1	accept 1.49 x 10 ⁻¹⁴
		iii	at least one cycle of a sine or cosine curve as judged by eye	B1	ecf (b)(ii)2
			amplitude 8.0 x 10^{-12} m	B1	
			period = $1.5 \times 10^{-14} s$	B1	
			Total question 5	14	

	Question		Expected Answers	Marks	Additional Guidance
3					
	а	i	when (two) waves meet/combine/interact/superpose, etc. (at a point)	M1	allow for A1 mark: (vector) sum/resultant
			there is a change in overall intensity/displacement	A1	displacement(s)/AW
		ii	constant phase difference/relationship (between the waves)	B1	just stating same frequency not sufficient
	b	i	path difference of $n\lambda$ for constructive interference	M1	allow waves arrive in phase
			producing either maximum amplitude/intensity or a maximum	A1	
			path difference of $(2n + 1)\lambda/2$ for destructive interference	M1	allow waves arrive in anti-/out of phase
			producing either minimum amplitude/intensity or a minimum	A1	max 3 marks; max 1 mark for two correct marking points but with n omitted
		ii	$x = \lambda D/a = 0.030 \times 5.0/0.20$	C1	give 1 mark max for 0.75 mm but zero for
			=0.75 (m)	A1	750 m
		iii 1	intensity increases by factor of 4	B1	
			position unchanged	B1	
		2	intensity unchanged	B1	
			distance apart of maxima is doubled	B1	
		3	intensity unchanged	B1	
			maxima move to positions of minima (and vice versa)	B1	
			Total question 6	14	