Question			Expected Answers	M	Additional Guidance
1					
	a		same frequency / period different amplitude / phase	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	accept wavelength / sinusoidal /AW accept + sine and - sine for 2 marks
	b		because the waves have a constant phase relationship or are continuous and have the same $\mathrm{f} / \mathrm{period} / \lambda$ they are coherent	M1 A1	accept same phase relationship for 1 mark only
	C		$\begin{aligned} & \text { use of } 3 \mathrm{~ms} \text { as period } \\ & \mathrm{f}=1 / 3.0 \times 10^{-3}=330(\mathrm{~Hz}) \\ & \text { using } \mathrm{v}=\mathrm{f} \lambda 340=330 \lambda \\ & \lambda=1.0(2)(\mathrm{m}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	ecf for f possible e.g. $\lambda=1020(m)$ accept 1.03 (m) no SF error here
	d	i	0	B1	
		ii	1.0 ($\mu \mathrm{m}$)	B1	look for SF error i.e. zero for 1 ($\mu \mathrm{m}$)
	e	i	Intensity a (amplitude) ${ }^{2}$ so ratio is $(3 / 2)^{2}=9 / 4$ (giving 2.25 I)	$\begin{array}{\|l\|} \hline \text { C1 } \\ \text { A1 } \\ \hline \end{array}$	allow $1 \sim \mathrm{~A}^{2}$
		ii	resultant $A=A_{S}+A_{T}=(\pm) 1$ so ratio is $(1 / 2)^{2}$ giving 0.25 I	$\begin{array}{\|l\|} \hline \text { C1 } \\ \text { A1 } \\ \hline \end{array}$	ecf from (d)(ii)
	f	i	phase shift of π or 180° required or movement of $\lambda / 2$ $1.02 / 2=0.51(\mathrm{~m})$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	$\text { ecf from (c); accept }(2 n+1) / 2 \lambda$ $\text { accept } 0.50 \mathrm{~m}$
		ii	intensity increases to the maximum value	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	accept quantitative answers, i.e. from 0.25 I to 6.25 I
			Total question 4	18	

Question			Expected Answers	Marks	Additional Guidance
2					
	a	i	λ distance between (neighbouring) identical points/points with same phase (on the wave) f number of waves passing a point /cycles/vibrations (at a point) per unit time/second v distance travelled by the wave (energy) per unit time/second	$\begin{aligned} & \hline \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept peak/crest to peak/crest, etc. accept number of waves produced by the wave source per unit time/second not $v=f \lambda$ and not 'in one second'
		ii	in 1 second f waves are produced each of one wavelength λ distance travelled by first wave in one second is $f \lambda=v$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	accept time for one λ to pass is $1 / \mathrm{f}$ so $v=\lambda /(1 / f)=f \lambda$ give max 1 mark for plausible derivations purely in terms of algebra (no words)
	b	i	infra red is part of the e-m spectrum lower f or longer λ than the visible region/light or suitable value or range of λ	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	accept any single λ in range $10^{-5} \mathrm{~m}$ to 7.5 x $10^{-7} \mathrm{~m}$ or any reasonable wider range
		ii1	$\begin{aligned} & \lambda=\mathrm{c} / \mathrm{f}=3.0 \times 10^{8} / 6.7 \times 10^{13} \\ & 4.5 \times 10^{-6}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	accept 4.48×10^{-6} or more s.f.
		2	$\begin{aligned} & \mathrm{T}=1 / \mathrm{f}=1 / 6.7 \times 10^{13} \\ & \mathrm{~T}=1.5 \times 10^{-14}(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	accept 1.49×10^{-14}
		iii	at least one cycle of a sine or cosine curve as judged by eye amplitude $8.0 \times 10^{-12} \mathrm{~m}$ period $=1.5 \times 10^{-14} \mathrm{~s}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	ecf (b)(ii)2
			Total question 5	14	

Question			Expected Answers	Marks	Additional Guidance
	a	i	when (two) waves meet/combine/interact/superpose, etc. (at a point) there is a change in overall intensity/displacement	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	allow for A1 mark: (vector) sum/resultant displacement(s)/AW
		ii	constant phase difference/relationship (between the waves)	B1	just stating same frequency not sufficient
	b	i	path difference of $n \lambda$ for constructive interference producing either maximum amplitude/intensity or a maximum path difference of $(2 n+1) \lambda / 2$ for destructive interference producing either minimum amplitude/intensity or a minimum	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	allow waves arrive in phase allow waves arrive in anti-/out of phase max 3 marks; max 1 mark for two correct marking points but with n omitted
		ii	$\begin{aligned} & x=\lambda \mathrm{D} / \mathrm{a}=0.030 \times 5.0 / 0.20 \\ & =0.75(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	give 1 mark max for 0.75 mm but zero for 750 m
		iii 1	intensity increases by factor of 4 position unchanged	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
		2	intensity unchanged distance apart of maxima is doubled	$\begin{aligned} & \hline \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	
		3	intensity unchanged maxima move to positions of minima (and vice versa)	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
			Total question 6	14	

